

Some Pond Management References

- Austin, M. et al. 1996. Ohio pond management handbook: a guide to managing ponds for fishing and attracting wildlife. Ohio Department of Natural Resources, Division of Wildlife, Columbus, OH.
 http://wildlife.ohiodnr.gov/species-and-habitats/pond-management
- Many older pond-management fact sheets available via correspondence (revisions pending):

 braig.1@osu.edu
- Occasional newsletter articles:
 <u>http://senr.osu.edu/YourPondUpdate</u>
- My listserv:
 - https://lists.osu.edu/mailman/listinfo/pond-management-news

COLLEGE OF FOOD, AGRCULTURAL, AND ENVIRONMENTAL SCIENCES

Consultations with my onloc	Consultations	with	my	office
-----------------------------	---------------	------	----	--------

General topic	Percent frequency				
	2015 (N = 247)	2016 (N = 294)	2017 (N = 278)	2018 (N = 253)	
Aquatic plant management	14	18	19	21	
General pond/lake management	17	12	7	13	
Filamentous green algae	6	13	9	7	
Harmful algal blooms	15	8	7	_	
Wild aquatic organisms	_	_	9	10	
Fish kills	_	10	_	7	
Fisheries management	6	_	_	_	
Top five per year.			LEGE OF FOOD, AG	RICULTURAL,	

Relatively high rankers that didn't quite make the cut

- Aquatic invasive species
- Construction/Dredging
- Pond leaks/Levee erosion
- Persistent muddy water
- Specifically, Euglena blooms (recent, substantial upswing)

Top Five (Seven?) Pond Inquiries

OHIO STATE UNIVERSITY EXTENSION

The Outline (and ranking):

- Managing aquatic plants (1)
- Filamentous green algae (3)
- Harmful algal blooms (4)
- Fisheries management (7)
- Fish Kills (6)
- Wild aquatic organisms (5)
- General pond/lake management (2)

COLLEGE OF FOOD, AGRICULTURAL, ADD FRANCOMMENTAL SCIENCES

THE OHIO STATE UNIVERSITY COLLEGE OF FOOD, AGRICULTURAL, AND ENVIRONMENTAL SCIENCES

OHIO STATE UNIVERSITY EXTENSION Managing aquatic plants

The essence: Prevention:

- Pond construction: max depth (typically at least 8 or 12 feet) and slope (3:1).
- Manage nutrients proactively (external vs. internal sources).
- Dyes applied in early season (greatest benefit with increasing depth and retention time).

OHIO STATE UNIVERSITY EXTENSION

Managing aquatic plants

The essence: Tolerance:

- Beneficial competition against nuisance organisms and serves as valuable habitat (two considerations: 1. species diversity and 2. natives).
 Ordinarily 5–20% in ponds with fisheries considerations (higher is possible for ponds without fisheries concerns and much higher is possible for ponds without fish).
 Drawhack: expressive coverage
- Drawback: excessive coverage contributes to wide oxygen fluctuations
- and can stunt fish.
- Drawback: requires active management and some savvy.

OHIO STATE UNIVERSITY EXTENSION

Managing aquatic plants

· Treatment:

- Warm-water caveat. Only use herbicides specifically
- labeled for aquatic applications. Read, understand, and strictly adhere to the label, including use
- restrictions and safety info. - Whole water vs. spot treatments.
- Treat as early (1. target present and 2. effective temperature reached) and conservatively as possible.
- Triploid Grass Carp/white amur (2–10 per acre) are not silver bullets.
 - · Diet preference. · Relationship to nuisance algae.

 - Long lived.
 Dense stocking and beneficial vegetation.
 The OHIO STATE UNIVERSITY
 COLLEG OF FOOD ARRCHIVEMENT
 COLLEG OF FOOD ARRCHIVEMENT

quatic herbicide chemical Name	Absorption	Selectivity	Restrictions	
opper (copper sulfate and copper chelates)	Contact	Broad	Minimal	
odium carbonate peroxyhydrate	Contact	Broad	Minimal	
iquat	Contact	Broad	Moderate	
umioxazin*	Contact	Broad	Moderate	
arfentrazone-ethyl*	Contact	Broad	Moderate	
ndothall (amine salt and potassium salt)	Contact	Broad	Moderate	
lyphosate	Systemic	Broad	Minimal	
azamox	Systemic	Broad	Moderate	
pramezone*	Systemic	Selective	Moderate	
uridone	Systemic	Selective	Moderate	
orpyrauxifen-benzyl*	Systemic	Selective	Moderate	
ispyribac*	Systemic	Selective	Extensive	
azapyr	Systemic	Selective	Extensive	
enoxsulam*	Systemic	Selective	Extensive	
iclopyr	Systemic	Selective	Extensive	
4-D	Systemic	Selective	Extensive	

Contact herbicides

- Copper sulfate and copper chelates (a vast many: e.g., Cutrine brands, etc.): mostly algae (some submersed). •
- Sodium carbonate peroxyhydrate (e.g., GreenClean, Pak 27, Phycomycin, etc.): near-surface and shallow algae.
- Diquat (e.g., Reward, Weedtrine-D, Aquastrike [Endothall-dipotassium blend], etc.): submersed plants and some filamentous algae. Flumioxazin* (e.g., Clipper, Pond-Klear, Propeller, etc.): misc. submersed and free-floating plants, especially duckweeds and watermeal.
- . Carfentrazone-ethyl* (e.g., Stingray): misc. floating and emergent plants.
- Endothall (e.g., Aquathol [dipotassium], Hydrothol [mono-amine], Evac Biocide, Aquastrike [Diquat blend]): submersed plants and algae.

Karmex*/Diuron*, etc.: Do not use! Not labeled for aquatic applications.

For details, see OSU fact sheet "Chemical Control of Aquatic Plants" (Lynch 2009) excepting *.

COLLEGE OF FOOD, AGRICULTURAL, AND ENVIRONMENTAL SCIENCES

OHIO STATE UNIVERSITY EXTENSION

Systemic herbicides

- Glyphosate (e.g., Rodeo, Aquamaster, AquaPro, Eraser AQ, etc.): emergent plants. •
- Imazamox (e.g., Clearcast): very broad effectiveness, including several submersed invasives.
- Penoxsulam* (e.g., Galleon): emergent and some floating weeds including on exposed pond sediments.
- Topramezone* (e.g., Oasis): Select submersed, floating, and emergent species including several grasses.
- Fluridone (e.g., Sonar, Avast, Whitecap, etc.): primarily submersed and free-floating plants. •
- Florpyrauxifen-benzyl* (e.g., ProcellaCOR EC): Select free-floating, emergent, and submersed species, especially watermilfoils and several invasives.
- . Bispyribac* (e.g., Tradewind): misc., esp. floating and submersed.
- Imazapyr (e.g., Habitat, Arsenal, etc.): emergent (esp. grasses) & some floating weeds. .
- 2,4-D (e.g., AquaKleen, Navigate, Aquacide, Sculpin G, Weedar 64, etc.): specific plant species such as Eurasian watermilfoil, coontail, and limited effectiveness on waterlifies.
- Triclopyr (e.g., Renovate, Vastlan, Garlon 3A, Navitrol, etc.): selective aquatic effectiveness similar to 2,4-D. COLLEGE OF FOOD, AGRICULTURAL, AND ENVIRONMENTAL SCIENCES

For details, see OSU fact sheet "Chemical Control of Aquatic Plants" (Lynch 2009) excepting *.

OHIO STATE UNIVERSITY EXTENSION Useful plant management references

- For ID and management recommendations (common things only):

 Texas A&M: <u>aquaplant.tamu.edu/</u>
- For herbicide detail:

 University of Arkansas—Division of Agriculture, Research and Extension. 2017. Recommended chemicals for weed and brush control, MP44. Cooperative Extension Service, University of Arkansas System, Little Rock, AR.: https://www.uaex.edu/publications/od/mp44/mp44.pdf (vast, comprehensive, and requires a bit of savvy to digest).
- For new developments and current info:

 Aquatic Plant Management Society (APMS): http://www.apms.org/

 Midwest Aquatic Plant Management Society: http://www.apms.org/

OHIO STATE UNIVERSITY EXTENSION
Top Five (Seven?) Pond Inquiries
 The Outline (and ranking): Managing aquatic plants (1) Filamentous green algae (3) Harmful algal blooms (4) Fisheries management (7) Fish Kills (6) Wild aquatic organisms (5)
0 1 1/1 1 (0)

General pond/lake management (2)

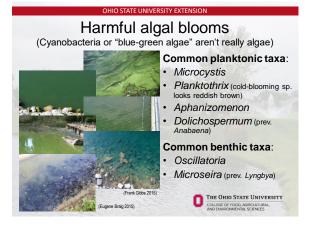
COLLEGE OF FOOD, AGRICULTURAL, AND ENVIRONMENTAL SCIENCES

COLLEGE OF FOOD, AGRICULTURAL, AND ENVIRONMENTAL SCIENCES

OHIO STATE UNIVERSITY EXTENSION Filamentous green algae (Don't call it "moss"!)

The essence:

- · Prevention:
 - Manage nutrients: fertilize watershed conservatively or not at all (avoid P), manage against Canada Geese, aerate with diffusers (i.e., bottom bubblers: reduces the ability of phosphorus to dissolve), etc.
 - Provide competition (i.e., tolerate plants in watershed and within pond).


OHIO STATE UNIVERSITY EXTENSION

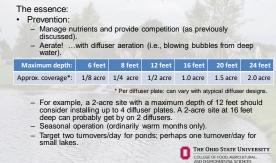
Filamentous green algae

- (Don't call it "moss"!)
- The essence:
- Treatment:
 - Elemental copper is standard algaecide (copper sulfate or chelates): follow label.
 - Some herbicides are effective on some algal species (diquat or especially endothall or flumioxazin).
 - Copper-resistant algae (especially *Pithophora* spp.) are less common and difficult to manage.
 - Often treated with copper chelates blended with diquat (1:1, 2 gallons/acre-foot) or endothall (2:1, 1 gallon/acre-foot) with nonionic surfactant (1–2 gallons/surface acre).
 - Warm-water caveats apply to algaecide applications.
 Blue tilapia (a tropical fish) increasingly commonly used in Ohio.
 - Assuming Largemouth Bass present, stock 7"-10" tilapia at 10-100 lbs./acre (depending on algae coverage).
 - · Harvest fish in fall as metabolism slows.

THE OHIO STATE UNIVERSITY COLLEGE OF FOOD, AGRICULTUR

Harmful algal blooms

(Cyanobacteria or "blue-green algae" aren't really algae)


- Often indicate nutrient enrichment (especially by excessive phosphorus or a low N:P ratio.
- Many species can produce toxins, but variably so.
 Single point-in-time tests don't reveal much; meaningful toxin monitoring of a bloom site over time becomes prohibitively expensive.
 - Give monitoring priority on sites used for commercial purposes (like irrigation or aquaculture), domestic water supplies, or with public contact/access.
 - Less so (like probably not at all) on sites used for casual recreation or aesthetics (instead, limit human contact and restrict access by domestic animals).

COLLEGE OF FOOD, AGRICULTURAL,

OHIO STATE UNIVERSITY EXTENSION

Harmful algal blooms

(Cyanobacteria or "blue-green algae" aren't really algae)

Harmful algal blooms

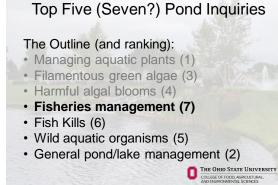
OHIO STATE UNIVERSITY EXTENSION

(Cyanobacteria or "blue-green algae" aren't really algae)

- Treatment caveats:
 - Tend to be late-season bloomers...
 - Standard warm-water caveat applies.
 - Cyanotoxins will ordinarily be both in solution and contained within particulate organisms.
 - Treatment won't add additional toxins, but can lyse cells placing more of the concentration in solution.
 - It's easier to filter out particulate organisms than to treat water to remove soluble chemicals.
 - Successful application of algaecides to kill a bloom will end the production of additional toxins.
 - If present, toxins will persist for some time after the bloom is eliminated. You can't know the toxins are gone unless you test for them.

COLLEGE OF FOOD, AGRICULTURAL, AND ENVIRONMENTAL SCIENCES

OHIO STATE UNIVERSITY EXTENSION


Harmful algal blooms

(Cyanobacteria or "blue-green algae" aren't really algae)

The essence:

- Treatment:
 - Apply algaecides as necessary (with caveats).
 - Typical/Planktonic blooms: formulae of copper or copper chelates.
 - · Tricky benthic blooms:
 - Sodium carbonate peroxyhydrate followed the next day (or so) by copper chelates + surfactant or...
 Copper (or chelates) + diquat + surfactant.
 - Surface scums concentrated by breeze: repeat treatments with sodium carbonate peroxyhydrate.

COLLEGE OF FOOD, AGRICULTURAL, ADD ENVIRONMENTAL SCIENCES

Pond fisheries

OHIO STATE UNIVERSITY EXTENSION

- The essence is the nature of smallness: limited space and lack of habitat diversity. A pond cannot function like Lake Erie in supporting a self-sustaining fishery!

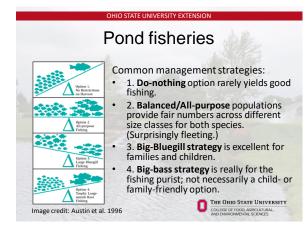
 Very small areas (perhaps less than ½ acre) are likely to require more active management, possibly supplemental feeding.
 Keep fisheries extremely simple! ...Usually a single level of predator-prey interaction.
 Largemouth Bass-Bluegil (supplementing with Channel Catfish if desired) is our region's tried and true.
 Alternative species not necessarily appropriate for the pond novice. Ask questions if ya gots'em. .

OHIO STATE UNIVERSITY EXTENSION

Pond fisheries

Stocking new or renovated ponds

Number to stock per acre			re	
Stocking strategy	Bass	Bluegill	Redear	Catfish
Largemouth Bass-Bluegill Sunfish	100	500		
Largemouth Bass-Bluegill-Channel Catfish	100	500		100
Largemouth Bass–Redear Sunfish	100		500	
Largemouth Bass-Bluegill and Redear Sunfish	100	350	150	
Largemouth Bass-Bluegill-Redear-Catfish	100	350	150	100
Recommended size (can go larger):	3–5 in.	2–3 in.	2–3 in.	3–5 in.
 New-pond ideal: Stock with Fathead Minnows and spawning habitat in sp Follow with game species in fall. 	ring.	COLLEGE O	IO STATE UI	LTURAL,


OHIO STATE UNIVERSITY EXTENSION

Pond fisheries

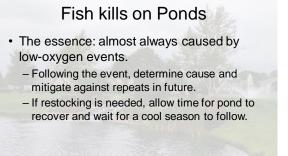
- The self-sustaining-pond-fishery quiz:
- · Do you get to have both lots of fish and big fish?
- Do you get to have both trophy-sized Bluegills and trophy-sized Largemouth Bass?

THE OHIO STATE UNIVERSITY COLLEGE OF FOOD, AGRICULTURAL

· Not likely, eh?

Top Five (Seven?) Pond Inquiries

The Outline (and ranking):


- Managing aquatic plants (1)
- Filamentous green algae (3)
- Harmful algal blooms (4)
- Fisheries management (7)
- Fish Kills (6)
- Wild aquatic organisms (5)
- General pond/lake management (2)

COLLEGE OF FOOD, AGRICULTURAL, AND EMARCOMMENTAL SCIENCES

THE OHIO STATE UNIVERSITY

EGE OF FOOD, AGRICULTURA

Π

Fish kills on ponds

OHIO STATE UNIVERSITY EXTENSION

- · Warm-season kills caused by low-oxygen stress: usually occur at night, often observed in early morning.
 - Excessive area vegetated by plants or algae in excessively shallow water. Complete cover by duckweeds or watermeal.
 - Treating too extensive an area with herbicide/algaecide.
 - Prevention:
 - Tolerate moderate vegetative cover.
 - Treat vegetation as early in season and conservatively as possible.
 - · Aerate.

OHIO STATE UNIVERSITY EXTENSION

Fish kills on ponds

Classic summer kill: usually follows premature turnover induced by late-summer rain. Can be indicated by opaque, grayish water.
 Prevention:

- Plan new-pond construction to allow input of wind energy and delay sunlight exposure (align fetch with prevailing wind, trees to the east and north, etc.).
- Manage to slow pond aging and muck accumulation.
- Aerate throughout warm months, beginning before onset of warm-season stratification.

OHIO STATE UNIVERSITY EXTENSION

ice.

- Prevention:

- Shovel snow from ¼ of pond surface.
- Aerate from shallow water to erode a hole in ice (with waterfowl caveat).
- ...But not both!
- Tolerate moderate vegetative cover.
- Avoid large herbicide/algaecide treatments late in the previous season.

OHIO STATE UNIVERSITY EXTENSION Fish kills on ponds

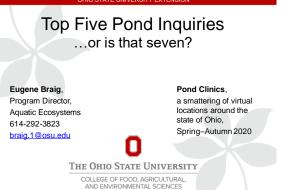
Misc. causes:

- Low-oxygen stress will affect all fish species (albeit differentially).
- Spawning is hard work! Resultant stress will cause some mature fish to die, especially in late spring. That's totally natural.
- Substantial kills resulting from disease are relatively uncommon and may only affect a single species.
- Substantial kills resulting from toxic events are downright rare to ponds: toxins will affect all species (albeit differentially), typically affecting small fish (susceptible to lower effective doses) first.

n	THE OHIO STATE UNIVERSITY
U	COLLEGE OF FOOD, AGRICULTURAL, AND ENVIRONMENTAL SCIENCES

Wild organisms to commonly

colonize ponds


• These dudes are cool and can indicate healthy oxygen concentrations.

Top Five (Seven?) Pond Inquiries The Outline (and ranking): Managing aquatic plants (1) Filamentous green algae (3) Harmful algal blooms (4) Fisheries management (7) Fish Kills (6) Wild aquatic organisms (5) General pond/lake management (2)

OHIO STATE UNIVERSITY EXTENSION

